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Abstract-A fixed domain numerical scheme for ablation problems based on the enthalpy formulation and 
with temp:rature as the main dependent variable is presented. A fictitious material which occupies the 
region where the material has been removed is introduced, and its material properties are : null specific 
heat and any value for the conductivity, preferably that of the lower temperature phase. The ablating 
surface is transformed on an internal interface and the thermal load there is represented as a concentrated 
internal heat source on the interface. The resulting two-phase Stefan problem is discretized with the scheme 

presented in a series of previous papers. Finally, several numerical examples are presented. 

1. INTRODUCTION 

Thermal ablation is a very important problem in aero- 
space industry [l-6] (thermal protection of space 
vehicles during the re-entry stage and in rocket noz- 
zles) and laser welding. A severe heat flux, typically 
coming from radiation or convection, is applied to 
the body, which is initially in ‘virgin’ phase. As the 
temperature rises, it can experience one or several 
chemical transformations. In the case of thermal pro- 
tection for the aerospace industry these are, typically, 
pyrolysis with gas emission and melting. For the ther- 
mal protection to be effective all these reactions must 
be strongly endothermic. The material exposed to the 
thermal load is removed by several effects : mechanical 
(high shear strerises in the aerodynamic boundary 
layer) or chemical. In the case of a phase-change to a 
phase with very low mechanical strength, the material 
is removed immediately after it reaches the phase- 
change temperature. This is the Stefan-type or phase- 
change ablation and it will be the physical model 
adopted in what follows. 

Ablation problems, as well as one or two-phase 
Stefan problems, are moving boundary problems, and 
the simplest approach to their numerical solution is 
some kind of adaptative moving mesh. However, for 
the two-phase Stefan problem, the so called enthalpy 
formulation circu:mvents the problem by introducing 
a single enthalpy balance equation which can be solved 
on fixed meshes [i’-lo]. The phase-change is present as 
a singularity in the enthalpy-temperature relationship 
and the interface is ‘captured’ by the algorithm, rather 
than being ‘tracked’. In a series of papers we presented 
a discretization scheme based on the enthalpy for- 
mulation for two (or more) phase Stefan problems. 
The scheme has the temperature as the main unknown 
and is based on a straightforward Galerkin weighted- 
residual formulation of the enthalpy balance equa- 

tion. Moreover it has no regularization parameters. 
Key points of the method are : the accurate integration 
of a discontinuous quantity, namely the enthalpy, over 
the partially melted elements [l l] and the efficient 
solution of the nonlinear resulting system, described 
in [12]. 

The basic idea of the present work is to put the one- 
phase ablation problem in the context of the two- 
phase Stefan one by means of the introduction of a 
fictitious phase occupying the region where the 
material has been removed. This fictitious phase exists 
at temperatures above the phase-change one and it 
has null specific heat so that eventual variations of 
temperature do not contribute to the energy balance. 
Furthermore, its conductivity is specified as the same 
of the low temperature phase, so that its thermal 
diffusivity is infinitely higher than that of the low 
temperature phase. As a consequence, the fictitious 
phase is always in a quasi-steady state and, due to 
the particular boundary condition (null flux at initial 
boundaries and temperature equal to the melting one 
at the interface), it has a uniform temperature infini- 
tesimally higher than the melting one. 

2. PROBLEM DESCRIPTION 

For simplicity we will assume no intermediate trans- 
formation so that, as the virgin material is heated and 
its temperature exceeds the melting temperature T,,,, 
it changes into the low mechanical strength phase 
and is instantaneously removed. Initially, the virgin 
material occupies the domain R with boundary r. Due 
to thermal loads 4 over certain part of the boundary 
r,(t = 0) c I-, the temperature rises and once the T, 
is reached at some time t = t,, at some point of the 
boundary, the material begins to be removed. For 
t > to we have the domain R partitioned in two: 

2843 



2844 M. STORTI 

NOMENCLATURE 

CP specific heat 
D thermal diffusivity 
erf(x) error function 
f scaled temperature profile 
f vector of conductive fluxes 
g vector of thermal loads 
h(T) enthalpy 
h vector of nodal enthalpies 
k thermal conductivity 
1 characteristic decay length of the 

temperature profile (see Section 5.2) 
L latent heat 
0” term coming from the latent heat 

contribution to the enthalpy 
ML interface capacity matrix 
fi unit normal 
N, FEM-interpolation function 
P3 4 integer numbers 
Q volume heat source 
4 thermal load at the boundary 
()renl refers to the removed zone 
s, s ablating surface position in one- 

dimensional problems, recession 
rate for 1D problems 

dS elementary portion of the interface 
$0 initial position of the interface (see 

Section 5.1) 
s” position of the interface for the FEM 

method at time P 
Ste Stefan number 
t time 
to preheating time 
At time step 
At* non-dimensional time step for the 

constant load problem 
T temperature 
T initial temperature field 
T, melting temperature 
T prescribed temperature on the 

Dirichlet boundary 

TfiC temperature in the fictitious phase 
T vector of nodal temperatures 
V recession rate of the ablating surface 
a, limit recession rate 
X one-dimensional coordinate 
X vector of spatial coordinates. 

Greek and mathematical symbols 
c( temporal discretization parameter 
4 test function 
I- boundary 
l-m interface 
e (1) incidence angle in the definition of 

the fluxes 
(2) non-dimensional temperature in 
the transition zone 

r,(t) boundary of Q(t) where thermal loads 
are applied 

l-r Dirichlet part of the boundary 
i correction factor for the characteristic 

length of the 1D constant-load 
problem 

P non-dimensional spatial coordinate in 
the transition region 

P density 
characteristic decay time 

; domain of resolution 
8 empty set. 

Subscripts and superscripts 
fiC fictitious material 
L part of the enthalpy coming from the 

latent heat 
rem region where material has been 

removed 
V virgin material 
n time level P 
PL, ” node indices for FEM. 

R = C&(t) u C&,,(t) (from ‘virgin’ and ‘removed’, see 
figure). Due to the removal of some part of the Lv-kg = q(Tl,J on&(t) (2) 

material, the surface exposed to the thermal load is 
r&I 

no longer r,(t = 0), but it is composed by part of it T= F onr, (3) 
and the moving boundary. If the thermal load is no 
longer applied after a certain moment, the tem- asz, = r,(t) u rr (4) 
perature of the moving boundary could descend below 
T, and the front ceases to advance. where u is the recession rate in the normal direction to 

All this cases are included in the following gov- the ablating surface and is restricted by the following 

erning equations : complementary conditions : 

given T,(x) for x in Q, q(t, T(x),x) for t > 0 and x 
in T,(t), and T(x) < T,,, for x in rT, find Q(t) and 

T< T, u = 0 (stationary front) (5) 

T(x, t) for t > 0 and x~Q(t) such that : T = T,,, u > 0 (moving front) (6) 

pc,F= V.(kVT) xEQ,(t),t > 0 (1) and initial conditions : 
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Fig. 1. Description of a typical ablation problem. 

T(K,O) = T(x) XEQ (7) 

Q,(t = 0) = fi R,,(t = 0) = 0. (8) 

Here k is the thermal conductivity, and L the latent 
heat of the phase change. Equation (2) is the usual 
energy balance at the interface for moving boundary 
problems. The ex:pression for 4 is often more com- 
plicated, since, in general, it involves a boundary layer 
calculation over the surface of the body and, then, 
results in a non-lolcal function, depending on the glo- 
bal shape of the ablating surface I,(t). However, this 
complex dependence is treated in an explicit form and, 
then, the presented representation is quite sufficient to 
explain the algorithm. 

3. TWO-PHASE EQUIVALENT FORMULATION 

3.1. Two-phase formulation for the 1 D probIem 
For the one-dimensional (1D) semi-infinite prob- 

lem equations (l)--(8) reduce to : 
given T,(x) for x > 0 and q(t) for t > 0, find s(t) for 

t > 0 and T(x, t) for t > 0, x > s(t) such that : 

,c$=k$ x>s(t) t>O (9) 

with boundary conditions : 

-kg-+Ls = q(t) onx = s(t) (10) 

T@(t)) = T,,, and d’ z 0 or T@(t)) < T,,, and.+ = 0 

(11) 

and initial conditions : 

s(O) := 0 T(x, 0) = T,(x). (12) 

For simplicity suppose k, PC,, constants and 4 
depending only on time, i.e. not on surface tem- 
perature as in the #case of radiation or convection. A 
possible extension to a two-phase Stefan problem is 
the following : the fictitious phase exists for T > T, 
and kac = k,, PC,,,, = 0. The thermal load q(t) is 
applied on x = 0 (see Fig. 2). In detail : 

given T,(x) for x > 0 and q(t) for t > 0, find T(x, t) 
such that for x > 0, t > 0 : 

Fig. 2. Two-phase formulation of the one-dimensional prob- 
lem. First version : the thermal load is applied at the surface 
and is transmitted without inertia through the fictitious 

material. 

h=; k(T)& 
( 7 

(13) 

with boundary conditions : 

-kg=q(t) onx=O,t>O (14) 

and initial conditions : 

T(x, 0) = T,(x) para t = 0. (15) 

The enthalpy function is [see Fig. 3 for the general 
case cP, = c,(T)1 : 

T < T’ 
7-2 T,,, 

(16) 

(h(T;) = 0 has been taken as the reference enthalpy). 
In what follows, we will show how this formulation 

reduces to the original one, equations (9)-(12). The 
non-trivial part of the demonstration consists in show- 
ing how the energy balance at the interface (10) is 
enforced for t > t,,. The specific heat is null in the 
fictitious phase 0 < x < s(t) so that it is in a steady 
state : 

=0 inO<x<s(t) (17) 

then : 

-kg 
ax +- = -kg = q(t) (18) 

0 

but, by the energy balance at the interface for the two- 
phase problem : 

Fig. 3. Enthalpy function for the two-phase formulation. 
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s 
m Q<x, M4 dx = 4(04(40) (24) 
0 

T ! Lb-- Tf 
- . . ..-....... -..-.- . ..-........... -..- ..-. _.._ 

X 

lation, the fictitious phase is in the steady state and, 
then, the heat flux is constant throughout : 

for every smooth but otherwise arbitrary test function 
Cp. Now, we will show how this formulation is equi- 
valent to the original one. As in the previous formu- 

Fig. 4. Two-phase formulation of the one-dimensional prob- 
-kg 

a(r)- 
=-kg =O. (25) 

0 
lem. Second version : the thermal load is added as a heat 
source strongly localized at the interphase. Temperature in 

the fictitious phase is constant and equal to T,+. 
The energy balance at the interface, taking account of 
the concentrated source Q, is : 

-k$ I I +kg 
-k!? 

=LS t>t,. (19) 
/ 

ax S(f)- 
= -kgiJcij++L+[;:‘Q(x,t)dx 

s(l)+ SW 

From (18) and (19) we obtain the desired energy bal- (26) 

ante at the surface : Now, using equations (24) and (25) : 

-kE 
ax s(r)+ 

+ LS = q(t). (20) - kg +Ls = q(t) 
Y 

(27) 

This formulation is very well suited to apply all the and the desired energy balance is enforced. 
theory from the two-phase problem (the resulting sys- 
tem is symmetric and positive definite). However it 3.2. The multidimensional problem 
can not be extended to the multidimensional case : in The extension to the multidimensional case is now 
1D all the heat flux imposed at x = 0 is transmitted to obvious : 
the free boundary trough the fictitious phase without given T,(x) for x in R, q(t, x, T(x)) for I > 0 and x 
inertia. In the multidimensional case the heat flux in 0, find T(x, t) for x in Sz, t > 0 such that : 
applied at the original surface of the body is redis- 
tributed in the fictitious phase and there is no control 
on the flux density at each point of the interface. 
However, a good approximation can be obtained with 
this formulation if the variation of the flux on the 
surface is smooth and the curvature small. 

To overcome this difficulty for the general case, 
the formulation is slightly modified as follows: the 
thermal load 4 is no longer applied at x = 0 but is 
represented as a concentrated heat source in the inter- 
face (see Fig. 4). The properties for the fictitious phase 
are the same as in the previous model : 

given T,(x) for x > 0 and q(t) for t > 0, find T(x, t) 
for t > 0, x > 0 such that : 

lrl;+b bnundary conditions : ..lC.l “V, 

i(t) ifT(x=O,t)<T, atx=O 
il FT(x=O,t)> T, 

inx>O (21) 

h=V*(kVT)+Q(x,t) inR,t>O (28) 

with boundary conditions : 

ii s ; Fin r,(t = 0) (29) 
, m 

T= i= inI, (30) 

where R,,, has been replaced by RfiC, n is the unit 
normal exterior to a,,, and initial conditions : 

T(x, 0) = T,(x) fort = 0 (31) 

h(T) is defined always by (16) and the gen- 
eralization of the definition of Q (24) is : 

s Q(x, tM(x) dQ = s 4(x)4(x) dS. (32) 
n r,” 

To show the equivalence to the original ablation prob- 
lem, equations (l)-(8), we note first that, as the spec- 
ific heat of the fictitious phase is null, we have : 

V. (kVT) = 0 inn,, (33) 

and initial conditions : 
(22) with boundary conditions 

T(x,O) = T,(x). (23) 
-kg=0 inI,(t=O) and 

The heat source Q(x, t) is proportional to a Dirac’s T= T,,, in I, (moving front). (34) 
6 distribution at the moving front T = T,,,, with a total 
amount of heat delivered per unit time given by the The solution to this steady problem is trivial : 

thermal load q(t) : T = T,,, in DC,. (35) 
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Fig. 5. Control volume enclosing an elementary portion of 
the ablating surface. 

But this implies that the heat flux coming to the inter- 
face from the fictil:ious phase is null : 

-kg =o. 
flc 

(36) 

Writing down an energy balance over a thin cyl- 
indrical control-volume of thickness 6 enclosing an 
elementary portion of surface dS of the ablating sur- 
face (see Fig. 5), we have that : 

-k$lfi~dS+k;~~dS+QdSd =Lv,dS (37) 

where fi is the unit normal exterior to a,,. But, from 
the definition of Q, equation (32) : 

Qtln = QdS8 = qdS (38) 

replacing equations (38) and (36) in (37) we arrive at 
the desired energy balance at the interface : 

-k:i +Lv, =q inr,. 
” 

(39) 

Regarding the extension to non-isothermal ablation 
problems, i.e. when the ablation temperature is deter- 
mined by an additional balance relationship, the key 
point is that the solution to equations (33) and (34) 
with a T, depending on position is no longer a con- 
stant temperature field and, then, equation (36) is 
false. This problem can be solved by setting the con- 
ductivity to a very low value in order to eliminate 
conduction through the fictitious phase. However, this 
extension has not been implemented so far. 

4. DISCRETIZATION SCHEME +(1 -a)f(T(t))+g(t+ctAt). (46) 

Once the ablation problem has been cast in the 
form of an equivalent two-phase Stefan problem, any 
discretization scheme for this last, simpler, problem 
can be applied. Certainly, the equivalent two-phase 
problem is harder than typical two-phase Stefan prob- 
lems due to the null specific heat for the fictitious 
phase, and some degree of robustness of the scheme 
is advisable. In what follows we will briefly review 
the discretization scheme which has been presented in 
previous papers [ 11, 121, and has been used suc- 

This scheme reduces to: forward Euler, Crank-Nich- 
olson, Galerkin and backward Euler for IX = 0, l/2, 
2/3 and 1, respectively. For a given temperature vector 
T at time t, equation (46) is a nonlinear equation for 
T(t + At). Nonlinearity comes from the dependence of 
k and pcP on temperature and also from the change 
of phase which, as a matter of fact, could be viewed 
as a &type singularity in the PC,(T) relationship. The 
expression for the nodal enthalpies, equation (43), 
involves the integral over the element of the enthalpy 

cessfully in the numerical experiments presented in 
Section 5. 

First we recall the variational formulation of the 
Stefan problem : 

where 4 is a test function in such a way that it vanishes 
at the Dirichlet boundary. As usual in the finite 
element method (FEM) the temperature field is 
approximated by : 

T(x, t) = 2 T,,(t)N,(x) (41) 
p=l 

where p is a node index and the (N,,(x)} are FEM 
interpolation functions. Also, the interpolation func- 
tions corresponding to those nodes which do not 
belong to the Dirichlet part of the boundary are taken 
as test functions. Replacing equation (41) in (40) and 
4 by each of the interpolation functions we obtain a 
nonlinear ODE’s system of the form : 

;M’-UJ = fCr>+g(4 (42) 

where h, f and g are column vectors of length 
N = number of nodes, with entries : 

h, = c N,h( T(x, t)) da (nodal enthalpies) (43) 
JO 

f, = - 
s 

VN, . kVT(x, t) dn 
n 

(nodal conductive fluxes) (44) 

g, = 
s 

N,Q(x)dfi+ N,qdS 
n s r, 

(nodal external thermal loads). (45) 

The difficulty comes from the fact that the relation 
between T and h is not one-to-one. The ODE’s system 
is discretized in time according to a generalized trap- 
ezoidal rule as : 

&h(T(t+At))-h(T(t))) = ctf(T(t+At)) 
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which is discontinuous at the interface. This integral 
must be evaluated very carefully, mainly by a reason 
of conditioning of the nonlinear system more than by a 
reason of accuracy [ 1 I, 121. For instance, the classical 
numerical quadrature by Gauss points, so familiar in 
the FEM, gives nodal enthalpies with jumps at those 
nodal temperatures where the interface passes through 
a Gauss point. 

For the implicit schemes (tl > l/2), the nonlinear 
system is solved by Newton-Raphson iteration, and 
a correct evaluation of the Jacobian is the key feature 
to obtain good convergence properties. Besides the 
usual terms in the Jacobian, like the conductivity 
matrix and the capacity matrix corresponding to sens- 
ible heat, there is a term coming from the latent heat 
which dominates at small Stefan numbers (high latent 
heat), and whose expression is [ 121: 

ah; 
==T,= T=T s 

L 
N,(x) mNv(x) dS (47) 

m 

where hL is that part of the enthalpy coming from the 
latent heat. The integral is calculated over the interface 
T = T,,,, and its physical significance shows up if the 
factor L/lVTl is interpreted as the specific heat per 
unit area of the interface. In numerical experiments at 
low Stefan numbers (high latent heat) the full New- 
ton-Raphson method has been proved to be much 
more efficient and robust than secant methods, i.e. 
methods which do not include this interface capacity 
matrix. 

There is a point to be clarified regarding the charac- 
ter of the thermal load vector coming from the heat 
source Q(x, t). In fact, this is not a standard heat 
source since it depends on the temperature vector 
through the position of the interface, besides the 
explicit dependence of the flux density on the tem- 
perature of the ablating surface. Then, it contributes 
also with a term to the Jacobian of the system, whose 
expression is rather complicated: it has one term com- 
ing from a change in the interpolation function at the 
interface due to its movement and another coming 
from a change in the curvature of the interface [13]. 
We have not included this term in the iteration matrix, 
but no instability has been observed, as it could be 
expected. 

5. NUMERICAL EXAMPLES 

5.1. One-dimensional example with exact solution by 
truncation of the Neumann solution 

5.1.1. Problem description. Consider the following 
standard unsteady heat-conduction problem with 
constant coefficients in a semi-infinite medium : 

pc,f=k$ forx>O,t>O 

T(0, t) = T, 

T(x,O) = T. (48) 

9(t) 

Fig. 6. 1D problem with exact solution. Problem description. 

with T, < T, (see Fig. 6). The so-called Neumann 
solution is obtained by similarity arguments in terms 
of the error function : 

T(x, t) = T,,, - (T, - 7;) erf -?-- 
( > J4ot (49) 

where D = k/pc,[ =]m’ s-’ is the diffusivity, and the 
error function is defined as : 

erf (x) = L ~ 1 eex” dx’ 
s 

erf(0) = 0 erf(+co) = 1. (50) 

The ablation problem is constructed choosing some 
phase-change temperature T,, T, < T,,, < T,, a latent 
heat L > 0 and an arbitrarily chosen initial surface 
position s0 > 0, and selecting the heat flux history q(t) 
such that the resulting temperature field is given by 
(49) (see Fig. 6). 

The position of the interface is obtained from : 

W(t), 0 = Tm (51) 

44 -= 
J2z 

erf-, .q = s* 
i 

and, the preheating time to is given by : 

*=s*- 
(53) 

For t < to the heat to be applied at s0 is given by : 

q(t) = -kg t < t, 
SO 

and for t > to the latent heat delivered must be taken 
into account : 

4(t) = LS--kg t > to. (55) 
s(r)+ 

Replacing the expression for the temperature field 
from equation (49) and the recession rate from equa- 
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SFO.5 

01 
bO.47: 

2 3 4f 5 

Fig. 7. ID problem with exact solution. Time dependence of 
the thermal load, and the position of the ablating surface 

s(t). 

tion (52), the exphcit expression for the thermal load 
is : 

4(t) = 

fort < to 

fort > to 

(56) 

(see Fig. 7). The thermal load is discontinuous at 
t = t,,, and the magnitude of the jump is : 

2Ls*D 
q(to +cq - q(h) -0) = - 

a’ 
(57) 

5.1.2. Numerica! results. The problem was solved 
numerically for the following values : 

T, =: 2 T,,, = 1 T, = 0 

pep = k- = 1 L = 5 s0 = 0.5 

from which : 

Ste = pc,Vm - 9 
L 

= 0.2 D = 1 

s* =: 0.477 to = 0.275. 

The heat flux history is (see Fig. 7) : 

._e-o.MWr t < 0.275 

t > 0.275 

The interval 0.5 < x < 7 has been discretized with 50 
elements with a non-uniform mesh size such that the 
size of the first element is one-tenth the size of the last 
one. 

1.2 

T,,,=7 
0.8 

0.4 

0 

Fig. 8. Comparison between exact and numerical solutions 
att= lSand5. 

In Fig. 8, we compare the numerical solution and 
the exact one for t = 1.5 and t = 5, and in both cases 
they agree very well, showing at the top the nodal error 
for both time levels. For t = 5 there is a significant 
difference near the right (x = 7) boundary due to the 
fact that temperatures are already significant there. 
This causes a ‘reflection’ at the artificial boundary 
which is not present in the analytical solution. The 
fact that the discrete solution is almost equal to twice 
the analytical solution confirms this assertion. Finally, 
the temperature profile in the fictitious phase is not 
exactly T,,,, but a little higher. This phenomenon will 
be explained for the constant load case in Section 
5.2.1. The position of the ablating surface is compared 
against the exact one in Fig. 7. 

5.2. Asymptotic solution for the constant loadproblem 
5.2.1. Problem description. Let us consider now the 

typical case of a semi-infinite (x > 0) constant- 
coefficients problem with a constant heat load 
4 # q(t). For t + co the solution approaches asymp- 
totically a steady profile moving at constant speed : 

S-+V, T(x, t) =f(X-S(t))(Tm-Ti)+Tm (58) 

where v, is the limit recession rate and f is the nor- 
malized profile satisfyingf(0) = 0 andf(co) = 1. As 
is typical in thermal transients, the approach to the 
limit solution is exponential, and we can put : 

s(t) = -s, +v,t+O(e-‘“) (59) 

where s, is a limit shift produced by the transient and 
‘t a characteristic decay time. v, is easily obtained 
from a power balance : 
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(L+pCp(Tm- Ti))V, = 4. (60) 
Replacing equation (58) in the heat conduction equa- 
tion, and changing to a coordinate system attached to 
the moving profile, a simple ODE for f is obtained, 
whose solution is an exponential function. The result- 
ing temperature profile is : 

T&t) = T,--(T,-TJ l-exp - 
i ( 

X-v,t+s, 
I 

>I 

forx > vat--S, (61) 

where the characteristic decay length of the profile in 
the medium is : I = D/urn. Finally, the limit shift is 
obtained from a balance of the total energy applied 
to the body : 

4t = [L+pc,(T,-T,)l(v,t-s,) 

+Pcp(~m-w 
s 

m emr dt; (62) 
0 

and results in : 
I 

s, =- 
1 +SteC’ 

This asymptotic solution is known as the “evap- 
oration-controlled limit”. 

It is interesting to see that a similar “steady solu- 
tion” exists for the proposed scheme, exhibiting exact 
asymptotic velocity, i.e. a solution that behaves (for 
t + co) as a steadily propagating temperature profile : 

T”+‘(x) = T”(x-As). (64) 

Moerover, due to the energy conserving property of 
the enthalpy formulation As = v,At, i.e. the asymp- 
totic velocity is obtained exactly by the discrete 
scheme. For simplicity we will describe it for the case 
when the discretization is performed in time only, 
and later we will see through the examples that this 
property is found in the fully discretized version. 

The 1D version of equation (28) for constant 
properties, discretized in time with a two-step back- 
ward Euler scheme is : 

h(T”+‘)-h(T”) a2y+l 

At 
= -k,x,+q@SN). (65) 

Note that the external heat load is taken into account 
explicitly. Replacing equation (64) in (65) and inte- 
grating from x = 0 to cc it is shown that : 

AS 
l=vm. 

Assuming q = 0 for simplicity, the equations gov- 
erning the steady state discrete solution are : 

7=+1-T” a2Tn+1 

PC, At 
= -k- 

ax2 
inx > P’ (67) 

pcpT,+L---pc,T” a2Tn+l 

At 
=-k- ins”<x<s”+’ 

ax* 
(68) (see Fig. 9). As 1 < 1, the temperature in the fictitious 

0 5 10 15 20 At* 25 

Fig. 9. Dependence of the correction factor I for the charac- 
teristic decay length of the discrete solution versus the non- 

dimensional time-step At. 

aTa+’ 
p=O inx<s” 

ax2 
(69) 

with the following matching conditions : 

aT”+’ 
(I= -k- 

aT”+’ 

ax 
+k---- atx = f+’ 

(s”+Q+ ax (J-“+l)- 

(70) 

q= _kc +kaT”fl 
ax 

atx = s”. 
(0 + 0”) - 

(71) 

We refer to the region s” < x < P ’ as the “transition 
region”, i.e. the region that is being ablated in the 
current time step. The solution to equations (67)-(71) 
can be found as [ 131: 

1 T,J?(l) forx <s” 

T,@(p) fors” < x < P’ 
T - n+l _ 

a(x-f+L) 
I forx >, s”+’ 

(72) 

where (3 = T/T, and n = (P ’ -x)/As are the non- 
dimensional temperature and spatial coordinate in the 
transition region : 

O(p) = l+iAt*+At*(l+Ste-I); 

+q+~)] (73) 

At* = At&/D is the non-dimensional time step and 
l/1 is the characteristic decay length for the discrete 
problem (65), satisfying the transcendental equation : 

1 -emaA’* _ il 
IAt* (74) 
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Fig. 10. Comparison of proposed FEM and asymptotic solu- 
tinn. fnv th,= rnnrt~nt lnarl nmhbm 

phase, other than the transition region, x < s” is 
always greater than the melting temperature : 

T,, = T,,, 
1 

1+1/281*(LfSte-‘)+;-I 
1 

> T,,,. 

(75) 

With respect to the precision of the scheme, the error 
in the position of the ablating surface is, asymp- 
totically : 

f-s(n,4t) = - $& I (76) 

so that the position of the discrete ablating surface is 
always retarded with respect to the exact one. As a-+ 
1 for At* -+ 0 it (can be shown that T,, + T,, s” -+ 
s(nAt) and l/n + Z, so that the discrete profile con- 
verges to the exact one. 

5.2.2. Numerical results. The problem has been 
solved for the following physical data : 

T,,,=l pc,=k=D=l L=l 4=4. 

For the discretization, we have taken At = 0.125 and 
a uniform mesh with Ax = 0.05. To assure that the 
asymptotic solution is reached the simulation has been 
followed for a very long period of time t = 32, what 
is more than 120 times the characteristic decaying time 
r = l/v, = 0.25. Such a simulation would required a 
mesh of length v,t = 64, at least, what is equivalent 
to 64/0.05 = 1280 elements. Instead we performed all 
the simulation in a mesh of length 10 (200 elements), 
by partitioning the entire simulation in 32 small sub- 
periods AtSp = 1. ,4t the end of each sub-period the 
entire profile was displaced by a length As,, = v,AtSp. 
In Fig. 10 we can see the computed temperature profile 
and the asymptotic one. The temperature in the fic- 
titious zone is T,, := 1.72 and the error in the ablating 
surface position is f-s(nAt) = 0.0548 in perfect 
agreement with the prediction from equations (75) 
and (76). The position of the ablating surface s” is 
evaluated by computing the intersection of the linear 
temperature profile in the element with the ablating 
temperature. From this, an approximation for the 
recession rate s”+“* = (Sn+’ -$‘)/At is obtained. This 
value was exact to eight digits. This behavior is poss- 

D’ B' 

r,=40 __&___________ A' rp80 

E C 

Fig. 11. Geometry description for the 3D problem. (All 
dimensions in mm.) 

ible only if the length traversed by the ablating surface 
asymptotically AS is equal to an integer number of 
elements. In this case AS = 0.25 = 5Ax. If this is not 
the case, but As/Ax = p/q with p, q integers then the 
averaged velocity over q consecutive time steps is 
exact. We checked this by performing a numerical 
experiment similar to the previous one but with a 
At = 0.0625, i.e. one half the previous one. The abla- 
ting surface travels asymptotically 2.5 elements each 
time step. The computed recession rates oscillates 
between the following two values: s*+‘/* = 
2.0034072, S2n+‘/2 = 1.9965927, giving an averaged 
velocity correct to eight digits again. 

5.3. Ablation of a thermalprotection 
5.3.1. Problem description. The geometry can be 

observed in Fig. 11 and consists of a solid of revolution 
whose intersection with the meridian plane x = 0 is 
shown. For the physical properties we use those ones 
representative of virgin silica phenolic (see Table 1) : 
pyrolysis is taken into account as a phase-change at a 
fixed temperature of Tp = 800 K and ablation occurs 
at a fixed temperature of T, = 2666 K. 

The boundary conditions are: adiabatic at the toro- 
idal section AB-A’B’ and at the rear plane AA’. A 
thermal load arising from aerodynamic heating at an 
incidence of 30” on the x = 0 plane is applied to the 
spheric surface B’CB. The thermal load is constant in 
time for t > 0 and depends on position as : 

q(P) = 40 cos /V 

= & (cos 0 cos 8, - sin 0 sin B0 sin rp) 

with q,, = 0.04 kW/cm* and 8, cp are spherical coor- 
dinates with respect to the center E of a generic point 
P on the spherical surface : 

z = zE+rTZcosO 

x = r2 sinecoscp 

y = r2 sinesincp. 

/I is the angle between the segments EP and EF with 
F the stagnation point (maximum heat load density) 
at rp = -90” and 8 = B0 = 30”. This thermal load is 
proposed only in order to test the model and does not 
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Table 1. Physical properties for the 3D numerical example 

Phase P [kg m-7 k [kW m-’ K-‘1 cp [kJ kg-’ Km’] Transition 

( )” 1656 0.69 x 10m3 1.26 Pyrolysis, Tp = 800 K 
( )c 1324 1.04 x 1om3 1.05 Ablation, T,,, = 2666 K 

take into account the coupling between the shape and 
the aerodynamic heating on a re-entry vehicle. 

Initially, the body is at a uniform temperature of 
T, = 300 K. The limit recession rate (for a 1D equi- 
valent problem) is : 

40 

= 4.47 x 10e3 cm s-’ 

and the typical decaying length of the normal tem- 
perature profile is 1 = 1.67 cm. 

5.3.2. Numerical modeling. Only the x > 0 half of 
the problem was modeled by symmetry. The FEM 

UC0 - 

Z# _---- 

mesh is shown in Fig. 12 and has 5061 nodes and 
4320 elements. Note that it is highly refined near the 
external surface, in the normal direction. 

The first proposed method was used, i.e. imposing 
the thermal load always at the external surface, since 
the CPU-time requirements for this method is usually 
smaller. Recall that, in fact, this method ceases to be 
valid if large variations of the thermal load on the 
surface are present, but this is not the case for this 
problem. The temporal evolution was followed up to 
t = 500 s with 50 time steps of At = 10 s. 

5.3.3. Numerical results. We show in Fig. 13 the 
temperature profiles on the intersection of the plane of 
symmetry x = 0 and the external surface. The ablation 

Fig. 12. 3D FEM-mesh view. 
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Fig. 13. Temperature profiles at the intersection of the x = 0 
plane with the external spherical surface. 

500 

0 30 60 90 
Fig. 14. Temperature profiles at the intersection of they = 0 

plane with the external spherical surface. 

C . .- 
60 90 100 110 z[mm] 120 

Fig. 15. Temperature profiles at z-axis. 

temperature is reached at t x 50 s. In Fig. 14 we see 
the temperature profiles on the plane y = 0, and in 
Fig. 15 those on the z-axis. In this last figure we also 
show the location of nodes on the z-axis as small 
circles. Finally, we can see in Fig. 16 the shape pro- 
gression for t = llD0, 200 and 300 s. The run was 
performed on an Intel i486/50MHz based personal 
computer. 

F 
f=lOO WC! i) B’ B 

--------‘%F 
‘\ 

‘\\\ t=200 set 
\ \ 

i 

I 

B’ B 

A’ A 

.-------- ‘XF 
‘\ 

‘\ \\ t=3QQsec 
\ \ 

;:-‘s 

\ I 
8’ B 

A’ A 

Fig. 16. Shape progression. 

6. CONCLUSIONS 

An equivalent two-phase formulation is presented, 
which allows the modeling of ablation problems by 
means of a robust solver for the two-phase problem. 
The removed part is replaced by a fictitious material 
with null specific heat and the thermal load at the 
interface is added as a strongly localized heat source. 
The recession rate is predicted exactly for the 1D 
constant-load problem. The temperature in the fic- 
titious phase is almost constant, higher than the melt- 
ing temperature. Future work will be concentrated 
mainly in the extension to non-isothermal ablation 
and in implementing some kind of local refinement at 
the ablating surface in order to correctly model the 
jump in temperature gradient there. 
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